ENERGY RENOVATION OF EXISTING BUILDINGS Danish Case Study

Niels I. Meyer
Technical University of Denmark
nim@byg.du.dk

INTERNATIONAL BACKGROUND

Grim picture

- Failing international negotiations on mitigation of global warming and climate change (COP 15,16,17, Rio + 20).
- US and China refuse binding commitments.
- Increase in global temperature on the path towards 4 degrees centigrade or more not towards 2 degrees.
- All new empirical results point in the wrong direction.
- Greenland is melting faster than anticipated.
- More extreme dry and hot periods related to global warming –
 e.g. James Hansen (Proc. Natl. Acad. Sci., USA, 2012).
- Bonanza in shale gas delaying renewables + pollution risk.

DANISH BACKGROUND

Examples of targets in national energy agreement 2012

- Wind power to cover 50 % of Danish electricity consumption by 2020 a doubling compared to 2012 (ambitious).
- Renewable energy covering 35 % of total energy by 2020.
- CO2 emission reduced by 34 % by 2020 compared to 1990.
- Coal plants phased out by 2030.
- Oil heaters phased out by 2030.
- Electricity and heat covered completely by RES by 2035.
- Total Danish energy consumption covered by RES by 2050, including transportation.

CEESA PROJECT – www.ceesa.dk/publications

Sponsored by Danish Stratecical Research Council

- Overall goal: Develop detailed scenarios for outphasing of fossil fuels in all sectors of the Danish energy supply system (including transport) before 2050.
- Scenario road map: years 2015, 2020, 2030 and 2050.
- **Framework:** Goal to be reached, in principle, by national resources, i.e. as little energy import and export as possible.
- **Policy instruments:** Focus on new and efficient policy means, securing desired goal with balanced societal consequences.
- Secondary criteria: Low cost solutions, positive employment and export effects.

ENERGY FOR BUILDINGS

- About 40 % of energy consumption in industrial countries related to buildings (heating, cooling, electricity).
- New low energy houses with drastic reduction of yearly energy consumption. More attention needed for energy involved in building materials (life cycle analysis).
- Main problem is *existing houses* with lifetimes of 50 to 100 years compared to urgent need for energy reduction.
- Danish building stock in 2050 will consist of 70% to 80% of todays buildings.
- This paper will focus on barriers and solutions for *energy* renovation of exisisting houses (mostly Danish data).

HISTORICAL DEVELOPMENT OF ENERGY INTENSITY IN DANISH HOUSES

- Energy *intensity* (heat and electricity per m2 per year) has been reduced over the last 25 years from 195 kWh to 165 kWh (25 kWh related to electricity).
- Mainly due to extra insulation in old buildings (promoted by subsidies) and less energy intensity in new buildings.
- Total energy *consumption* has been increasing mainly due to increasing living area per person (*rebound effect*).
- This development requires new policy strategies in order to fulfil the official targets of energy conservation with focus on renovation of existing houses.

BARRIERS FOR EFFICIENT RENOVATION

Negative investor considerations and lock-in to old systems

- Too long pay-back times.
- Preference for investment in modern kitchen, larger panorama windows, new organisation of rooms etc.
- Better wait until a major renovation is necessary.
- Private comfort is disturbed during renovation.
- Major renovations may harm the original architecture.
- Lack of detailed knowledge concerning economy and comfort advantages in spite of campaigns.
- Lock-in to old tariff systems.
- Policy means have to overcome these barriers.

POLICY MEANS FOR RENOVATION OF HOUSES (1)

Reform of district heating tariffs

- About 60% of heat demand in Danish households is supplied by cogeneration plants and district heating systems.
- The fixed share of the tariff varies with location but goes up to 60 % in some cases.
- Societal economy supports investments leading to reductions of heat intensity of about 50%. Present tariffs prevent that.
- Proposed solution: *abolish fixed part of heat tariff* possibly combined with an economic compensation for young district heating systems.

POLICY MEANS FOR RENOVATION OF HOUSES (2)

Green building taxes and subsidies

- Green building tax graduated with energy intensity. This scheme requires labelling of energy intensity of all houses.
- Tax reductions and other forms of subsidies in relation to strong renovations and installation of RES.
- A number of old houses can not be economically renovated: the government may pay the owner to dismantle the house and replace it by a passive house.

POLICY MEANS FOR RENOVATION OF HOUSES (3)

New societal systems

- Green taxes are hitting low-income groups relatively strongest. This problem may be reduced by *introducing an energy cap per person below which the tax is low or zero and above which the tax is progressively rising.*
- A supplementary scheme is called *Personal Carbon Allowances (PCAs)* where all citizens have the same CO2 allowance for private heat and electricity, private car driving and private air travel. The money credit card would have to be supplemented by a CO2 credit card.
- The PCA system has been discussed in the UK parliament.

POTENTIAL FOR ENERGY SAVINGS BY RENOVATION

- The Danish SBI institute finds a potential reduction of about 30 % of present energy consumption in buildings (private houses and commercial buildings) by renovation.
- In absolute numbers improved insulation provides 37 PJ/y and renovation of installations 24 PJ/y out of 203 PJ/y total.
- This is a conservative estimate, and more efficient policy means will lead to potential reductions of about 43 %. This is without new societal systems like Personal Carbon Allowances etc.

CONCLUSIONS 1

- There is a large potential for energy conservation by renovation of existing building.
- This potential will not be realised without new systems for tariffs, taxes and institutional organisations.
- The new Danish government is presently investigating new policies to harnish the potential energy reductions by renovation of existing buildings.
- Unfortunate late news (August 27): Danish government proposes reductions in subsidies for house renovations!

CONCLUSIONS (2)

Personal reflections on international solutions

- A new club of international fore-runners should be created.
- New economic paradigm with less attention to GDP and more attention to sustainability, ecological economy and "limits to growth", equity and global solidarity (re Ross Jackson).
- Changes needed in present employment policies including lower working hours, sharing of paid work, more free time.
- Rich countries can afford a general *citizens salary*.
- New institutional frameworks and taxation systems.
- Precautionary Principle No new coal plants without CCS.
- 50 % of known coal and oil reserves to remain underground in order to keep global temperature increase below 2 degrees.

THANK YOU FOR YOUR ATTENTION

nim@byg.dtu.dk

www.ceesa.dk/publications

REFERENCES

- Tina Fawcett, Frede Hvelplund and Niels I. Meyer: "Personal Carbon Allowances", Conference paper for "Energizing Markets", October 31, 2008 at Copenhagen Business School, Denmark. nim@byg.dtu.dk
- Ross Jackson: "Occupy World Street", Chelsea Green Publishing, Vermont, USA, 2012.
- Niels I. Meyer, Frede Hvelplund and Jørgen S. Nørgård: "Equity, Economic Growth and Lifestyle", chapter 4 in "Energy, Sustainability and the Environment", Elsevier publishers, the Netherlands, 2011.
- Niels I. Meyer: "New Systems Thinking and Policy Means for Sustainable Energy Development", chapter 16 in "Paths to Sustainable Energy", Intech Open Access Publisher, Austria, 2011, www.intechopen.com
- Herman Daly: "Ecological Economics and Sustainable Development", in Advances in Ecological Economics, Edward Elgar Publishers, Northhampton, MA, USA, 2007.